
Policy Gradient & Actor-Critic
Methods

Recap
Dan Beechey

djeb20@bath.ac.uk

Reinforcement Learning
Department of Computer Science

University of Bath

1

Outline

• Introduction to Policy-Based Methods.

• Deriving A Simple Policy Gradient

• The REINFORCE Algorithm
• Reward-To-Go Policy Gradient

• Baseline Functions

• Actor-Critic Methods

• The Deep Deterministic Policy Gradient (DDPG) Algorithm

2

Last Lecture

Types of Reinforcement Learning Methods

• Value-Based RL
• Approximates the optimal action-value function 𝑄∗(𝑠, 𝑎).

3

Deep RL uses deep neural networks to
represent the value function or policy.

This Lecture

Types of Reinforcement Learning Methods

• Value-Based RL
• Approximates the optimal action-value function 𝑄∗(𝑠, 𝑎).

• Policy-Based RL
• Directly search the policy-space for the optimal policy 𝜋∗(𝑎|𝑠).

N.B. these are not mutually exclusive!

Deep RL uses deep neural networks to
represent the value function or policy.

4

Why Policy-Based Methods?

• So far, we have worked with value-based methods.
• We’d learn the action-value function, then derive a policy (e.g. 𝜖-greedy).

• What if the optimal policy is stochastic?
• Value-based methods have no natural way of dealing with this.

• Instead, could we learn the optimal policy directly?

5

Value-Based Deep RL Methods

𝑄𝜽(𝑠, 𝑎) = Expected return from choosing action 𝑎 in state 𝑠 and
following some policy 𝜋 thereafter, given parameters 𝜽.

• We can represent our action-value function as some differentiable
function of state 𝑠 and action 𝑎 with parameters 𝜽.
• E.g. as a Neural Network.

• We can then optimise our Q-function via stochastic gradient descent.

6

Policy-Based Deep RL Methods

𝜋𝜽 𝑎 𝑠 = Probability of choosing action 𝑎 given state 𝑠 and policy
parameters 𝜽.

• We can represent the policy as some differentiable function of the
state 𝑠 with parameters 𝜽.
• E.g. as a Neural Network.

• We can then optimise the policy via stochastic gradient descent.

7

Q-Network

8

Input
Layer

Hidden
Layers

Output
Layer

…

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎2)

𝑄(𝑠, 𝑎𝑛)

…

Policy Network

9

Input
Layer

Hidden
Layers

Output
Layer

…

𝜋(𝑎1|𝑠)

𝜋(𝑎2|𝑠)

𝜋(𝑎𝑛|𝑠)

…

Aliased Gridworld

10

State = (Wall to North, Wall to South, Wall to East, Wall to West)

Example Credit: David Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

11

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations!

(TRUE, TRUE, FALSE, FALSE)(TRUE, TRUE, FALSE, FALSE)

Example Credit: David Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

12

State = (Wall to North, Wall to South, Wall to East, Wall to West)

→ ← ↓ ← ←

These two states have identical representations!
A deterministic policy would not work well here.

Example Credit: David Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

13
Example Credit: David Silver

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations!
A stochastic policy would work much better!

→ ↔ ↓ ↔ ←

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Policy Gradient Methods

𝜋𝜽 𝑎 𝑠 = Probability of choosing action 𝑎 given state 𝒔 and policy
parameters 𝜽.

14

Policy Gradient Methods

𝜋𝜽 𝑎 𝑠 = Probability of choosing action 𝑎 given state 𝒔 and policy
parameters 𝜽.

• 𝐽(𝜋𝜽) is some objective function for our policy, which we aim to
maximise (e.g. undiscounted expected return).

15

Policy Gradient Methods

𝜋𝜽 𝑎 𝑠 = Probability of choosing action 𝑎 given state 𝒔 and policy
parameters 𝜽.

• 𝐽(𝜋𝜽) is some objective function for our policy, which we aim to
maximise (e.g. undiscounted expected return).

• Policy gradient update rule: 𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝜽𝒕𝐽 𝜋𝜽𝑡

16

Policy Gradient Methods

𝜋𝜽 𝑎 𝑠 = Probability of choosing action 𝑎 given state 𝒔 and policy
parameters 𝜽.

• 𝐽(𝜋𝜽) is some objective function for our policy, which we aim to
maximise (e.g. undiscounted expected return).

• Policy gradient update rule: 𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝜽𝒕𝐽 𝜋𝜽𝑡

• ∇𝜽𝐽 𝜋𝜽 is called the policy gradient.

17

Policy Gradient Methods

• Policy gradient update: 𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝜽𝒕𝐽 𝜋𝜽𝑡

• In order to use this update rule in an algorithm, we need an
expression for the policy gradient which we can numerically compute.

• This expression should depend only on 𝜋, ∇𝜽𝜋, 𝜽𝒕, and 𝐽.

• We will derive this expression for the policy gradient over the next
few slides, and then use it later on in an actual learning algorithm.

18

A Few Definition Reminders…

• A state-action trajectory 𝜏 = (𝑆0, 𝐴0, 𝑅0, … , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇−1, 𝑆𝑇).

• The return of a trajectory 𝐺 𝜏 = σ𝑡=0
𝑇 𝑅𝑡

• We’ll be using the undiscounted return, simply the sum of rewards.

• Our objective function 𝐽(𝜋𝜽) is the expected return:
𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽[𝐺(𝜏)]

• The expected value of a continuous random variable 𝑋 with
probability density function 𝑝(𝑥) is −∞

∞
𝑥 ∙ 𝑃(𝑥) .

19

Deriving the Policy Gradient

• We need to find the gradient of our objective function.
• Assume that we are using the undiscounted expected return as our objective

function, and we have full access to 𝜋, log 𝜋 and their derivatives.

• Let’s derive this step-by-step together!

• We’ll assume that we’ll have access to 𝜋𝜽, log 𝜋𝜽 and their
derivatives.
• When using a deep neural network, we will do (e.g. via backpropagation).

20

Deriving the Policy Gradient

• Step 1: What are we trying to find?

∇𝜽𝐽 𝜋𝜽 = ∇𝜽Ε𝜏~𝜋𝜽[𝐺(𝜏)]

21

Deriving the Policy Gradient

• Step 2: Expand Expectation

∇𝜽𝐽 𝜋𝜽 = ∇𝜽Ε𝜏~𝜋𝜽 𝐺 𝜏

∇𝜽𝐽 𝜋𝜽 = ∇𝜽න
𝜏

𝑃 𝜏 𝜽 𝐺(𝜏)

22

Deriving the Policy Gradient

• Step 3: Bring Gradient Under Integral

∇𝜽𝐽 𝜋𝜽 = ∇𝜽න
𝜏

𝑃 𝜏 𝜽 𝐺(𝜏)

∇𝜽𝐽 𝜋𝜽 = න
𝜏

∇𝜽𝑃 𝜏 𝜽 𝐺(𝜏)

23

Deriving the Policy Gradient

• Step 4: Log-Derivative Trick

∇𝜽𝐽 𝜋𝜽 = න
𝜏

∇𝜽𝑃 𝜏 𝜽 𝐺(𝜏)

∇𝜽𝐽 𝜋𝜽 = න
𝜏

𝑃 𝜏 𝜽 ∇𝜽 log 𝑃(𝜏|𝜽) 𝐺(𝜏)

24

Recall from calculus:

𝜕

𝜕𝑥
log 𝑓 𝑥 =

𝑓′(𝑥)

𝑓(𝑥)

Deriving the Policy Gradient

• Step 5: Return to Expectation Form

∇𝜽𝐽 𝜋𝜽 = න
𝜏

𝑃 𝜏 𝜽 ∇𝜽 log 𝑃(𝜏|𝜽) 𝐺(𝜏)

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽[∇𝜽 log 𝑃(𝜏|𝜽) 𝐺(𝜏)]

25

Deriving the Policy Gradient

• Step 5: Return to Expectation Form

∇𝜽𝐽 𝜋𝜽 = න
𝜏

𝑃 𝜏 𝜽 ∇𝜽 log 𝑃(𝜏|𝜽) 𝐺(𝜏)

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽[∇𝜽 log 𝑃(𝜏|𝜽) 𝐺(𝜏)]

26

Deriving the Policy Gradient

• What is ∇𝜽log 𝑃(𝜏|𝜽)?

𝑃(𝜏|𝜽) = 𝑃 𝑆0 ⋅ෑ

𝑡=0

𝑇

𝑃 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1 ⋅ 𝜋𝜽(𝐴𝑡|𝑆𝑡)

log 𝑃(𝜏|𝜽) = log 𝑃 𝑆0 +

𝑡=0

𝑇

log 𝑃(𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1) + log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

∇𝜽log 𝑃(𝜏|𝜽) = ∇𝜽log 𝑃 𝑆0 +

𝑡=0

𝑇

∇𝜽log 𝑃(𝑆𝑡+1, 𝑅𝑡|𝑆𝑡 , 𝐴𝑡) + ∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

27

Recall that:

logෑ

𝑖=0

𝑛

𝑃(𝑥𝑖) =

𝑖=0

𝑛

log𝑃(𝑥𝑖)

Deriving the Policy Gradient

• What is ∇𝜽log 𝑃(𝜏|𝜽)?

𝑃(𝜏|𝜽) = 𝑃 𝑆0 ⋅ෑ

𝑡=0

𝑇

𝑃 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1 ⋅ 𝜋𝜽(𝐴𝑡|𝑆𝑡)

log 𝑃(𝜏|𝜽) = log 𝑃 𝑆0 +

𝑡=0

𝑇

log 𝑃(𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1) + log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

∇𝜽log 𝑃(𝜏|𝜽) = ∇𝜽log 𝑃 𝑆0 +

𝑡=0

𝑇

∇𝜽log 𝑃(𝑆𝑡+1, 𝑅𝑡|𝑆𝑡 , 𝐴𝑡) + ∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

28

Recall that:

logෑ

𝑖=0

𝑛

𝑃(𝑥𝑖) =

𝑖=0

𝑛

log𝑃(𝑥𝑖)

Deriving the Policy Gradient

• Step 6: Substitute Grad-Log-Prob of Trajectory

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽[∇𝜽 log 𝑃(𝜏|𝜽) 𝐺(𝜏)]

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽

𝑡=0

𝑇

∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡) 𝐺(𝜏)

29

Deriving the Policy Gradient

• All Done!

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽

𝑡=0

𝑇

∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡) 𝐺(𝜏)

We now have an expression for our policy-gradient which depends only
on 𝜋, log 𝜋, their derivatives.

30

Deriving the Policy Gradient

• All Done!

∇𝜽𝐽 𝜋𝜽 ≈
1

𝐷

𝜏∈𝐷

𝑡=0

𝑇

∇𝜽 log 𝜋𝜽 𝐴𝑡 𝑆𝑡 𝐺(τ)

Since our expression is an expectation, we can approximate it by taking
the sample mean over many trajectories 𝜏 ∈ 𝐷.

31

We can approximate this with the sample mean of many trajectories 𝜏 ∈ 𝐷:

∇𝜃𝐽 𝜋𝜃 ≈
1

𝐷

𝜏∈𝐷

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅(τ)

Given a trajectory 𝜏

32
Image Credit: OpenAI

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.htmlhttps:/spinningup.openai.com/en/latest/spinningup/rl_intro3.html

Policy Network – Action Selection

33

Input
Layer

Hidden
Layers

Output
Layer

…

𝜋𝜽(𝐴1|𝑆)

𝜋𝜽(𝐴2|𝑆)

𝜋𝜽(𝐴𝑛|𝑆)

…

Policy Network – Action Selection

• Raw output of our network
won’t actually be probabilities!
• They’ll be action preferences.

34

Input
Layer

Hidden
Layers

Output
Layer

…

𝑦𝑎1

𝑦𝑎𝑛

…

𝑦𝑎2

Policy Network – Action Selection

35

Input
Layer

Hidden
Layers

Output
Layer

…

𝑦𝑎1

𝑦𝑎𝑛

…

𝑦𝑎2

• Raw output of our network
won’t actually be probabilities!
• They’ll be action preferences.

• We can use soft-max over our
network’s outputs to perform
action selection.

𝜋𝜽 𝐴𝑖 𝑠 =
𝑒𝑦𝐴𝑖

σ𝑗 𝑒
𝑦𝐴𝑗

36

Algorithm: REINFORCE

Initialise parameters: step size 𝛼 ∈ (0,1]
Initialise policy network 𝜋 with parameters 𝜽

For episode = 1,𝑀 do

Generate an episode trajectory 𝜏~𝜋𝜽
For 𝑡 = 1, 𝑇 − 1 do

𝐺 ← σ𝑘=𝑡+1
𝑇 𝛾𝑘−𝑡−1𝑅𝑘

𝜽 ← 𝜽 + 𝛼 𝛾𝑡∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡) 𝐺
End For

End For

37

Algorithm: REINFORCE

Initialise parameters: step size 𝛼 ∈ (0,1]
Initialise policy network 𝜋 with parameters 𝜽

For episode = 1,𝑀 do

Generate an episode trajectory 𝜏~𝜋𝜽
For 𝑡 = 1, 𝑇 − 1 do

𝐺 ← σ𝑘=𝑡+1
𝑇 𝑅𝑘

𝜽 ← 𝜽 + 𝛼 ∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡) 𝐺
End For

End For

𝛾 = 1 (No Discounting)

38

Algorithm: REINFORCE

Initialise parameters: step size 𝛼 ∈ (0,1]
Initialise policy network 𝜋 with parameters 𝜽

For episode = 1,𝑀 do

Generate an episode trajectory 𝜏~𝜋𝜽
For 𝑡 = 1, 𝑇 − 1 do

𝐺 ← σ𝑘=𝑡+1
𝑇 𝑅𝑘

𝜽 ← 𝜽 + 𝛼 ∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡) 𝐺
End For

End For

𝛾 = 1 (No Discounting)

Our Policy-Gradient!

Sample Return

39

Algorithm: REINFORCE

Initialise parameters: step size 𝛼 ∈ (0,1]
Initialise policy network 𝜋 with parameters 𝜽

For episode = 1,𝑀 do

Generate an episode trajectory 𝜏~𝜋𝜽
For 𝑡 = 1, 𝑇 − 1 do

𝐺 ← σ𝑘=𝑡+1
𝑇 𝑅𝑘

𝜽 ← 𝜽 + 𝛼 ∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡) 𝐺
End For

End For

𝛾 = 1 (No Discounting)

Our Policy-Gradient!

Sample Return

Our Policy-Gradient!
…or is it?

Reward-To-Go Policy Gradient

• Currently, we update the log-probabilities of each action in
proportion to the sum of all rewards taken during a trajectory.

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽

𝑡=0

𝑇

∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡) 𝐺(𝜏)

• This doesn’t make much sense. Instead, we could only reinforce
actions based on the rewards earned after they were executed.

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽

𝑡=0

𝑇

∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

𝑡′=𝑡

𝑇

𝑟(𝑆𝑡′ , 𝐴𝑡′ , 𝑆𝑡′+1)

40
Sum of all rewards after time-step 𝑡.

Sum of all rewards.

Advantages of Policy-Gradient Methods

• Deals naturally with stochastic policies.

• Stochastic policies explore naturally.

• Stronger convergence guarantees than value-based
methods.

41

Baseline Functions

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽

𝑡=0

𝑇

∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

𝑡′=𝑡

𝑇

𝑟 𝑆𝑡′ , 𝐴𝑡′ , 𝑆𝑡′+1

42

Baseline Functions

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽

𝑡=0

𝑇

∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

𝑡′=𝑡

𝑇

𝑟 𝑆𝑡′ , 𝐴𝑡′ , 𝑆𝑡′+1

• Currently, there will be high variance in the magnitude of our
updates.
• Trajectories may vary a lot between runs.

• Some states will have a high value, others will have a low value.

• We can’t avoid variance due to stochasticity in our policy or the
environment.

• We can take into account variance in state values.

43

Baseline Functions

• We want to reduce the variance in the magnitude of our updates.

• We can reduce the variance of the updates by subtracting a baseline
function 𝑏(𝑠𝑡).

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽

𝑡=0

𝑇

∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

𝑡′=𝑡

𝑇

𝑟 𝑆𝑡′ , 𝐴𝑡′ , 𝑆𝑡′+1 − 𝑏(𝑆𝑡)

• We can use any function as a baseline, as long as it doesn’t change
our policy gradient in expectation.

44

Baseline Functions

• We want to reduce the variance in the magnitude of our updates.

• We can reduce the variance of the updates by subtracting a baseline
function 𝑏(𝑠𝑡).

∇𝜽𝐽 𝜋𝜽 = Ε𝜏~𝜋𝜽

𝑡=0

𝑇

∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡)

𝑡′=𝑡

𝑇

𝑟 𝑆𝑡′ , 𝐴𝑡′ , 𝑆𝑡′+1 − 𝑉𝜋(𝑆𝑡)

• We can use any function as a baseline, as long as it doesn’t change
our policy gradient in expectation.

• The value function 𝑉𝜋(𝑠𝑡) is a useful baseline function.

45

Combining Value & Policy-Based Methods

• Using baseline functions, we can combine value-based methods and
policy-based methods!
• We can use the state-value or action-value function as baselines!

• Instead of having one function representing either the value function
or a policy, we’ll need both!
• If we use a state-value function or action-value function as part of our policy

gradient updates, we will need to learn it separately.

46

Actor-Critic Methods

• Alongside using value functions as baselines, we can also use them to
for bootstrapping. This lets us move away from Monte Carlo updates.

• This gives us all the previous benefits that we’ve seen from
bootstrapping, and the benefits of policy-based methods.

• We call bootstrapping methods which learn the policy function
directly using estimates from value functions Actor-Critic Methods.
• The policy function is the “Actor”.

• The value function is the “Critic”.

47

Actor-Critic
methods
do both!

48

Types of Reinforcement Learning Methods

• Value-Based RL
• Approximates the optimal action-value function 𝑄∗(𝑠, 𝑎).

• Policy-Based RL
• Directly search the policy-space for the optimal policy 𝜋∗(𝑎|𝑠).

N.B. these are not mutually exclusive! (See, I told you!)

Deep RL uses deep neural networks to
represent the value function or policy

Deep Deterministic Policy Gradients

• DDPG is an actor-critic algorithm
for continuous action-spaces.

• It makes use of many of DQN’s
tricks, such as replay buffers and
target networks.

• It is off-policy, so can make use
of old experiences (unlike
REINFORCE).

• It makes policy-gradient updates
maximising Ε 𝑄 𝑠, 𝑎 .

49
Video Credit: Sam Kirkiles

Recall: We maximised Ε 𝑅(𝜏) earlier!

https://www.youtube.com/channel/UCdZXjYvK6W6KsmQrrpwtHmQ

DDPG Network Architecture

50

Input
Layer

Hidden
Layers

Output
Layer

…

𝑎

Actor Network (Policy-Network)

DDPG Network Architecture

51

Input
Layer

Hidden
Layers

Output
Layer

…

𝑎

𝑄(𝑠, 𝑎)

Critic Network (Q-Network)

DDPG Network Architecture

52

Critic Network (Q-Network)

Input
Layer

Hidden
Layers

Output
Layer

…

𝑎

𝑄(𝑠, 𝑎)

Input
Layer

Hidden
Layers

Output
Layer

…

𝑎

Actor Network (Policy-Network)

53

Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory 𝐷 to capacity 𝑁
Initialise critic network 𝑄 with random weights 𝜃𝑄, actor network 𝜋 with weights 𝜃𝜋

Initialise target critic network 𝑄 with weights መ𝜃𝑄 = 𝜃𝑄, target actor network ො𝜋 with weights መ𝜃𝜋 = 𝜃𝜋

Initialise target network learning rate 𝛽 ∈ (0,1]

For episode = 1,𝑀 do

Initialise random process 𝒩 for action exploration

Initialise initial state 𝑠1
For 𝑡 = 1, 𝑇 do

Select action 𝑎𝑡 = 𝜋 𝑠𝑡 +𝒩𝑡

Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1, next state 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in 𝐷
Sample random minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝐷

Set 𝑦𝑗 = 𝑟𝑗+1 + 𝛾 𝑄 𝑠𝑗+1, ො𝜋 𝑠𝑗+1

Perform gradient descent step ∇𝜃𝑄 𝑦𝑗 − 𝑄 𝑠𝑗 , 𝑎𝑗
2

on critic

Perform gradient ascent step ∇𝜃𝜋Ε 𝑄 𝑠𝑗 , 𝜋 𝑠𝑗 on actor

Update target networks መ𝜃𝑄 ← 𝛽𝜃𝑄 + (1 − 𝛽) መ𝜃𝑄, መ𝜃𝜋← 𝛽𝜃𝜋 + (1 − 𝛽) መ𝜃𝜋

End For

End For

54

Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory 𝐷 to capacity 𝑁
Initialise critic network 𝑄 with random weights 𝜃𝑄, actor network 𝜋 with weights 𝜃𝜋

Initialise target critic network 𝑄 with weights መ𝜃𝑄 = 𝜃𝑄, target actor network ො𝜋 with weights መ𝜃𝜋 = 𝜃𝜋

Initialise target network learning rate 𝛽 ∈ (0,1]

For episode = 1,𝑀 do

Initialise random process 𝒩 for action exploration

Initialise initial state 𝑠1
For 𝑡 = 1, 𝑇 do

Select action 𝑎𝑡 = 𝜋 𝑠𝑡 +𝒩𝑡

Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1, next state 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in 𝐷
Sample random minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝐷

Set 𝑦𝑗 = 𝑟𝑗+1 + 𝛾 𝑄 𝑠𝑗+1, ො𝜋 𝑠𝑗+1

Perform gradient descent step ∇𝜃𝑄 𝑦𝑗 − 𝑄 𝑠𝑗 , 𝑎𝑗
2

on critic

Perform gradient ascent step ∇𝜃𝜋Ε 𝑄 𝑠𝑗 , 𝜋 𝑠𝑗 on actor

Update target networks መ𝜃𝑄 ← 𝛽𝜃𝑄 + (1 − 𝛽) መ𝜃𝑄, መ𝜃𝜋← 𝛽𝜃𝜋 + (1 − 𝛽) መ𝜃𝜋

End For

End For

Pre-Fill Replay Buffer

Sample From Replay Buffer

Store Experience in Replay Buffer

55

Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory 𝐷 to capacity 𝑁
Initialise critic network 𝑄 with random weights 𝜃𝑄, actor network 𝜋 with weights 𝜃𝜋

Initialise target critic network 𝑄 with weights መ𝜃𝑄 = 𝜃𝑄, target actor network ො𝜋 with weights መ𝜃𝜋 = 𝜃𝜋

Initialise target network learning rate 𝛽 ∈ (0,1]

For episode = 1,𝑀 do

Initialise random process 𝒩 for action exploration

Initialise initial state 𝑠1
For 𝑡 = 1, 𝑇 do

Select action 𝑎𝑡 = 𝜋 𝑠𝑡 +𝒩𝑡

Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1, next state 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in 𝐷
Sample random minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝐷

Set 𝑦𝑗 = 𝑟𝑗+1 + 𝛾 𝑄 𝑠𝑗+1, ො𝜋 𝑠𝑗+1

Perform gradient descent step ∇𝜃𝑄 𝑦𝑗 − 𝑄 𝑠𝑗 , 𝑎𝑗
2

on critic

Perform gradient ascent step ∇𝜃𝜋Ε 𝑄 𝑠𝑗 , 𝜋 𝑠𝑗 on actor

Update target networks መ𝜃𝑄 ← 𝛽𝜃𝑄 + (1 − 𝛽) መ𝜃𝑄, መ𝜃𝜋← 𝛽𝜃𝜋 + (1 − 𝛽) መ𝜃𝜋

End For

End For

Initialise Target Networks

Generate Target Using Target Networks

Update Target Networks

56

Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory 𝐷 to capacity 𝑁
Initialise critic network 𝑄 with random weights 𝜃𝑄, actor network 𝜋 with weights 𝜃𝜋

Initialise target critic network 𝑄 with weights መ𝜃𝑄 = 𝜃𝑄, target actor network ො𝜋 with weights መ𝜃𝜋 = 𝜃𝜋

Initialise target network learning rate 𝛽 ∈ (0,1]

For episode = 1,𝑀 do

Initialise random process 𝒩 for action exploration

Initialise initial state 𝑠1
For 𝑡 = 1, 𝑇 do

Select action 𝑎𝑡 = 𝜋 𝑠𝑡 +𝒩𝑡

Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1, next state 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in 𝐷
Sample random minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝐷

Set 𝑦𝑗 = 𝑟𝑗+1 + 𝛾 𝑄 𝑠𝑗+1, ො𝜋 𝑠𝑗+1

Perform gradient descent step ∇𝜃𝑄 𝑦𝑗 − 𝑄 𝑠𝑗 , 𝑎𝑗
2

on critic

Perform gradient ascent step ∇𝜃𝜋Ε 𝑄 𝑠𝑗 , 𝜋 𝑠𝑗 on actor

Update target networks መ𝜃𝑄 ← 𝛽𝜃𝑄 + (1 − 𝛽) መ𝜃𝑄, መ𝜃𝜋← 𝛽𝜃𝜋 + (1 − 𝛽) መ𝜃𝜋

End For

End For

57

Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory 𝐷 to capacity 𝑁
Initialise critic network 𝑄 with random weights 𝜃𝑄, actor network 𝜋 with weights 𝜃𝜋

Initialise target critic network 𝑄 with weights መ𝜃𝑄 = 𝜃𝑄, target actor network ො𝜋 with weights መ𝜃𝜋 = 𝜃𝜋

Initialise target network learning rate 𝛽 ∈ (0,1]

For episode = 1,𝑀 do

Initialise random process 𝒩 for action exploration

Initialise initial state 𝑠1
For 𝑡 = 1, 𝑇 do

Select action 𝑎𝑡 = 𝜋 𝑠𝑡 +𝒩𝑡

Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1, next state 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in 𝐷
Sample random minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝐷

Set 𝑦𝑗 = 𝑟𝑗+1 + 𝛾 𝑄 𝑠𝑗+1, ො𝜋 𝑠𝑗+1

Perform gradient descent step ∇𝜃𝑄 𝑦𝑗 − 𝑄 𝑠𝑗 , 𝑎𝑗
2

on critic

Perform gradient ascent step ∇𝜃𝜋Ε 𝑄 𝑠𝑗 , 𝜋 𝑠𝑗 on actor

Update target networks መ𝜃𝑄 ← 𝛽𝜃𝑄 + (1 − 𝛽) መ𝜃𝑄, መ𝜃𝜋← 𝛽𝜃𝜋 + (1 − 𝛽) መ𝜃𝜋

End For

End For

58

Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory 𝐷 to capacity 𝑁
Initialise critic network 𝑄 with random weights 𝜃𝑄, actor network 𝜋 with weights 𝜃𝜋

Initialise target critic network 𝑄 with weights መ𝜃𝑄 = 𝜃𝑄, target actor network ො𝜋 with weights መ𝜃𝜋 = 𝜃𝜋

Initialise target network learning rate 𝛽 ∈ (0,1]

For episode = 1,𝑀 do

Initialise random process 𝒩 for action exploration

Initialise initial state 𝑠1
For 𝑡 = 1, 𝑇 do

Select action 𝑎𝑡 = 𝜋 𝑠𝑡 +𝒩𝑡

Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1, next state 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in 𝐷
Sample random minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝐷

Set 𝑦𝑗 = 𝑟𝑗+1 + 𝛾 𝑄 𝑠𝑗+1, ො𝜋 𝑠𝑗+1

Perform gradient descent step ∇𝜃𝑄 𝑦𝑗 − 𝑄 𝑠𝑗 , 𝑎𝑗
2

on critic

Perform gradient ascent step ∇𝜃𝜋Ε 𝑄 𝑠𝑗 , 𝜋 𝑠𝑗 on actor

Update target networks መ𝜃𝑄 ← 𝛽𝜃𝑄 + (1 − 𝛽) መ𝜃𝑄, መ𝜃𝜋← 𝛽𝜃𝜋 + (1 − 𝛽) መ𝜃𝜋

End For

End For

59

Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory 𝐷 to capacity 𝑁
Initialise critic network 𝑄 with random weights 𝜃𝑄, actor network 𝜋 with weights 𝜃𝜋

Initialise target critic network 𝑄 with weights መ𝜃𝑄 = 𝜃𝑄, target actor network ො𝜋 with weights መ𝜃𝜋 = 𝜃𝜋

Initialise target network learning rate 𝛽 ∈ (0,1]

For episode = 1,𝑀 do

Initialise random process 𝒩 for action exploration

Initialise initial state 𝑠1
For 𝑡 = 1, 𝑇 do

Select action 𝑎𝑡 = 𝜋 𝑠𝑡 +𝒩𝑡

Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1, next state 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in 𝐷
Sample random minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝐷

Set 𝑦𝑗 = 𝑟𝑗+1 + 𝛾 𝑄 𝑠𝑗+1, ො𝜋 𝑠𝑗+1

Perform gradient descent step ∇𝜃𝑄 𝑦𝑗 − 𝑄 𝑠𝑗 , 𝑎𝑗
2

on critic

Perform gradient ascent step ∇𝜃𝜋Ε 𝑄 𝑠𝑗 , 𝜋 𝑠𝑗 on actor

Update target networks መ𝜃𝑄 ← 𝛽𝜃𝑄 + (1 − 𝛽) መ𝜃𝑄, መ𝜃𝜋← 𝛽𝜃𝜋 + (1 − 𝛽) መ𝜃𝜋

End For

End For

In Today’s Lecture, We…

• Introduced policy-based methods as an alternative to value-based
methods.

• Discussed why policy-based method are useful for solving problems where
the optimal policy is stochastic.

• Derived the policy-gradient from first principles.

• Looked at a concrete Monte-Carlo Policy-Gradient algorithm, REINFORCE.

• Introduced baseline functions as a method of reducing the variance in our
policy gradient updates.

• Introduced actor-critic methods, which combine ideas from both value-
based and policy-based RL methods.

• Looked at a concrete actor-critic algorithm, DDPG.

60

Acknowledgements

• Chapter 13, Reinforcement Learning (2nd Ed.), Sutton & Barto 2018

• David Silver’s Policy Gradient Lecture

• OpenAI Spinning Up
• OpenAI Spinning Up Policy Gradient Derivation

• REINFORCE Paper, Williams 1992(!)

• DDPG Paper, Lillicrap et al. 2016

61

https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf
https://spinningup.openai.com/en/latest/
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#deriving-the-simplest-policy-gradient
https://link.springer.com/content/pdf/10.1007/BF00992696.pdf
https://arxiv.org/pdf/1509.02971.pdf

	Slide 1: Policy Gradient & Actor-Critic Methods Recap
	Slide 2: Outline
	Slide 3: Types of Reinforcement Learning Methods
	Slide 4: Types of Reinforcement Learning Methods
	Slide 5: Why Policy-Based Methods?
	Slide 6: Value-Based Deep RL Methods
	Slide 7: Policy-Based Deep RL Methods
	Slide 8: Q-Network
	Slide 9: Policy Network
	Slide 10: Aliased Gridworld
	Slide 11: Aliased Gridworld
	Slide 12: Aliased Gridworld
	Slide 13: Aliased Gridworld
	Slide 14: Policy Gradient Methods
	Slide 15: Policy Gradient Methods
	Slide 16: Policy Gradient Methods
	Slide 17: Policy Gradient Methods
	Slide 18: Policy Gradient Methods
	Slide 19: A Few Definition Reminders…
	Slide 20: Deriving the Policy Gradient
	Slide 21: Deriving the Policy Gradient
	Slide 22: Deriving the Policy Gradient
	Slide 23: Deriving the Policy Gradient
	Slide 24: Deriving the Policy Gradient
	Slide 25: Deriving the Policy Gradient
	Slide 26: Deriving the Policy Gradient
	Slide 27: Deriving the Policy Gradient
	Slide 28: Deriving the Policy Gradient
	Slide 29: Deriving the Policy Gradient
	Slide 30: Deriving the Policy Gradient
	Slide 31: Deriving the Policy Gradient
	Slide 32
	Slide 33: Policy Network – Action Selection
	Slide 34: Policy Network – Action Selection
	Slide 35: Policy Network – Action Selection
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Reward-To-Go Policy Gradient
	Slide 41: Advantages of Policy-Gradient Methods
	Slide 42: Baseline Functions
	Slide 43: Baseline Functions
	Slide 44: Baseline Functions
	Slide 45: Baseline Functions
	Slide 46: Combining Value & Policy-Based Methods
	Slide 47: Actor-Critic Methods
	Slide 48: Types of Reinforcement Learning Methods
	Slide 49: Deep Deterministic Policy Gradients
	Slide 50: DDPG Network Architecture
	Slide 51: DDPG Network Architecture
	Slide 52: DDPG Network Architecture
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: In Today’s Lecture, We…
	Slide 61: Acknowledgements

