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Types of Reinforcement Learning Methods

Last Lecture

Deep RL uses deep neural networks to
represent the value function



Types of Reinforcement Learning Methods

* Value-Based RL
* Approximates the optimal action-value function Q" (s, a).

This Lecture

Deep RL uses deep neural networks to
represent the value function or policy.

N.B. these are not mutually exclusive!



Why Policy-Based Methods?

e So far, we have worked with value-based methods.
 We'd learn the action-value function, then derive a policy (e.g. e-greedy).

 What if the optimal policy is stochastic?
* Value-based methods have no natural way of dealing with this.

* Instead, could we learn the optimal policy directly?




Value-Based Deep RL Methods

Qg (s, a) = Expected return from choosing action a in state s and
following some policy m thereafter, given parameters 0.

* We can represent our action-value function as some differentiable
function of state s and action a with parameters 0.

e E.g. as a Neural Network.

* We can then optimise our Q-function via stochastic gradient descent.



Policy-Based Deep RL Methods

mg(als) = Probability of choosing action a given state s and policy
parameters 6.

* We can represent the policy as some differentiable function of the
state s with parameters 0.
e E.g. as a Neural Network.

* We can then optimise the policy via stochastic gradient descent.
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Aliased Gridworld

State = (Wall to North, Wall to South, Wall to East, Wall to West)

Example Credit: David Silver
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

State = (Wall to North, Wall to South, Wall to East, Wall to West)
(TRUE, TRUE, FALSE, FALSE) (TRUE, TRUE, FALSE, FALSE)

These two states have identical representations!
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations!
A deterministic policy would not work well here.
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Example Credit: David Silver


http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations!
A stochastic policy would work much better!

Example Credit: David Silver
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Policy Gradient Methods

mg(als) = Probability of choosing action a given state s and policy
parameters 6.
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Policy Gradient Methods

mg(als) = Probability of choosing action a given state s and policy
parameters 6.

* [(mg) is some objective function for our policy, which we aim to
maximise (e.g. undiscounted expected return).
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mg(als) = Probability of choosing action a given state s and policy
parameters 6.

* [(mg) is some objective function for our policy, which we aim to
maximise (e.g. undiscounted expected return).
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Policy Gradient Methods

mg(als) = Probability of choosing action a given state s and policy
parameters 6.

* [(mg) is some objective function for our policy, which we aim to
maximise (e.g. undiscounted expected return).

* Policy gradient update rule: 08;,; = 0, + avet](ﬂet)

* VgJ(1g) is called the policy gradient.



Policy Gradient Methods
* Policy gradient update: 8;,; = 0; + CXVgt](T[gt)

* In order to use this update rule in an algorithm, we need an
expression for the policy gradient which we can numerically compute.

* This expression should depend only on i, Vg, 8¢, and ]J.

* We will derive this expression for the policy gradient over the next
few slides, and then use it later on in an actual learning algorithm.



A Few Definition Reminders...
* A state-action trajectory T = (Sy, 49, Ry, ..., ST—1,A7_1, R7_1, ST).

* The return of a trajectory G(7) = X1 _, R,
* We’ll be using the undiscounted return, simply the sum of rewards.

* Our objective function J(7rg) is the expected return:
J(g) = Er~n9 [G(T)]

* The expected value of a continuous rgondom variable X with
probability density function p(x) is f_oo x-+P(x).



Deriving the Policy Gradient

* We need to find the gradient of our objective function.

* Assume that we are using the undiscounted expected return as our objective
function, and we have full access to m, log T and their derivatives.

* Let’s derive this step-by-step together!

* We'll assume that we’ll have access to g, log g and their
derivatives.

 When using a deep neural network, we will do (e.g. via backpropagation).
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Deriving the Policy Gradient

e Step 1: What are we trying to find?

vH](TEH) — VBET~7TQ |G (7)]
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Deriving the Policy Gradient

» Step 2: Expand Expectation

Vol (1tg) = VoE; 7, G ()] )
Vo) (779) = Vg j P(I0)G(T)

T



Deriving the Policy Gradient

 Step 3: Bring Gradient Under Integral

Vo) (779) = Vg j P(I0)G(T) )

Vo) (79 = j VP (716)G ()

T



Deriving the Policy Gradient

e Step 4: Log-Derivative Trick

Recall from calculus:

J _ )
a_xlogf(x) = ﬁ

Vo) (79 = j VP (716)G ()

T

Vo) (g) = j P(z]0)V, log P(z]6) G ()

T
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Deriving the Policy Gradient

* Step 5: Return to Expectation Form

Vo) () = j P(z]6)V, log P(z]6) G () )

Vo] (tg) = Erp,[Vglog P(7]0) G (7)]



Deriving the Policy Gradient

* Step 5: Return to Expectation Form

T

Vo) () = j P(z]6)V, log P(z]6) G () )

Vo] (tg) = Erp,[Vglog P(7]0) G (7)]




Recall that:

Deriving the Policy Gradient og | [ PCx) = ) log P

* What is Vglog P(7]0)? .

P(c18) = P(So) - | [ P(St4e, R Sean) - mo(AclS))
t=0
T
log P(¢18) = log P(So) + ) 10g P(Se, A, Re,Se41) + 1086 (AcIS,)
t=0

Volog P(1|0) = Vglog P(S,) +
t

Volog P(St4+1, Re|St, Ar) + Vglogmg (AL|St)

T
=0



Recall that:

Deriving the Policy Gradient og | [ PCx) = ) log P

* What is Vglog P(7]0)? .

P(c18) = P(So) - | [ P(St4e, R Sean) - mo(AclS))
t=0

T
log P(¢18) = log P(So) + ) 10g P(Se, A, Re,Se41) + 1086 (AcIS,)
t=0

T
Velog P(1|0) = V9M+ z Vglog P R |Se, Ap) + Vglog mg (A |Se)
t=0
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Deriving the Policy Gradient

 Step 6: Substitute Grad-Log-Prob of Trajectory

Vo] (tg) = E1p,[Vglog P(7]0) G (7)]

VoJ(tg) = E;pp,

T
> Vologma(4.lS,) G(7)
t=0
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Deriving the Policy Gradient

e All Done!

T
Vo) (76) = Erny | ) Vologma(4clS:) G(r)
t=0

We now have an expression for our policy-gradient which depends only
on 7, log T, their derivatives.
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Deriving the Policy Gradient

e All Done!

Vol (e) = T Z Vo log (4 15)G (1)

TED t=

Since our expression is an expectation, we can approximate it by taking
the sample mean over many trajectories T € D.
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Image Credit: OpenAl

Given a trajectory T

V@J(’JT@) = V@ E [R(T)]

T

= V@/P(TW)R(T) Expand expectation
= / VoP(T|0)R(T) Bring gradient under integral
_ / (710)V, log P(+|0)R(7) Log-derivative trick
= E [Vylog P(7|0)R(7)] Return to expectation form

T~Tp

VQJ(’]TQ)

Tw:rr

Z Vg log mg(az|s:) R(7)

t=0
We can approximate this with the sample mean of many trajectories T € D:

VgJ(mg) =~ DI z z Vg logmg(ae|s:)R(T)

TED t=

Expression for grad-log-prob
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https://spinningup.openai.com/en/latest/spinningup/rl_intro3.htmlhttps:/spinningup.openai.com/en/latest/spinningup/rl_intro3.html

Policy Network — Action Selection




Policy Network — Action Selection

e Raw output of our network
won’t actually be probabilities!

* They’ll be action preferences.

Layer Layers Layer



Policy Network — Action Selection

e Raw output of our network
won’t actually be probabilities!

* They’ll be action preferences.

* We can use soft-max over our
network’s outputs to perform
action selection.

eyAi
Input Hidden Output g (Alls) — Z . eij
J

Layer Layers Layer




Algorithm: REINFORCE
Initialise parameters: step size a € (0,1]
Initialise policy network m with parameters @

For episode = 1, M do
Generate an episode trajectory t~mg
Fort=1,T —1do

G« Xi=t+1 7Ry
0 — 0+ ay'Vylogmg(4,|S;) G
End For
End For




Algorithm: REINFORCE
Initialise parameters: step size a € (0,1]
Initialise policy network m with parameters @

For episode = 1, M do
Generate an episode trajectory t~mg
Fort=1,T —1do

G « Xi=t+1 Rk
0 <0+ C(VglOg ﬂg(Atlst) G
End For
End For

y = 1 (No Discounting)



y = 1 (No Discounting)

Algorithm: REINFORCE

Initialise parameters:

step size a € (0,1]

Initialise policy network m with parameters @

For episode = 1,M ©
Generate an episoo

0
e trajectory t~mg

Fort=1T—-1¢
G<—Z£ t+1 Rk

0]

<+«—— Sample Return

0 <0+ C(VglOg ﬂg(Atlst) G

End For

End For our

Pollcy Gradient!



y = 1 (No Discounting)

Algorithm: REINFORCE

Initialise parameters:

step size a € (0,1]

Initialise policy network m with parameters @

For episode = 1,M ©
Generate an episoo

0
e trajectory t~mg

Fort=1T—-1¢
G<—Z£ t+1 Rk

0]

<+«—— Sample Return

0 <0+ C(VglOg ﬂg(Atlst) G

End For

End For our

PoI|cy Gradient!
..orisit?



Reward-To-Go Policy Gradient

* Currently, we update the log-probabilities of each action in
proportion to the sum of all rewards taken during a trajectory.

Vo (tg) = E;pp,, Z Volog g (A¢|St) G (T)

Sum of all rewards

* This doesn’t make much sense. Instead, we could only reinforce
actions based on the rewards earned after they were executed.

Vo (tg) = E;ppy, 2 Volog g (A¢|St) 2 r(Se Ay, Seryq)

t' =t

—

Sum of all rewards after time-step t.




Advantages of Policy-Gradient Methods

* Deals naturally with stochastic policies.
* Stochastic policies explore naturally.

e Stronger convergence guarantees than value-based
methods.

41



Baseline Functions

VO](T[H) — ET~TL’3

T
Z Volog g (A¢|St) (
t=0

T

z r(Ser Aer, Spriq)

t'=t

)
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Baseline Functions

V@](T[@) — ET~TL’3

T
Z Volog g (A¢|St)
t=0

T

Z (S, Ay Sery)

t'=t

* Currently, there will be high variance in the magnitude of our

updates.

* Trajectories may vary a lot between runs.
* Some states will have a high value, others will have a low value.

* We can’t avoid variance due to stochasticity in our policy or the

environment.

 \WWe can take into account variance in state values.




Baseline Functions

* We want to reduce the variance in the magnitude of our updates.

* We can reduce the variance of the updates by subtracting a baseline
function b(s;).

T T
Vo) (76) = Eeny | ) Vologma(AclSe) | ) 7(Spr,Ayr,Serys) = b(Se)
t=0 t'=t

* We can use any function as a baseline, as long as it doesn’t change
our policy gradient in expectation.




Baseline Functions

* We want to reduce the variance in the magnitude of our updates.

* We can reduce the variance of the updates by subtracting a baseline

function b(s;).
T

[T
Vo (g) = Erony z Vglog g (A¢|S:) 2 r(Se, Aer, Serir) — Ve (Se)
t=0

t'=t
* We can use any function as a baseline, as long as it doesn’t change
our policy gradient in expectation.

* The value function V;(s;) is a useful baseline function.




Combining Value & Policy-Based Methods

e Using baseline functions, we can combine value-based methods and
policy-based methods!

* \We can use the state-value or action-value function as baselines!

* Instead of having one function representing either the value function
or a policy, we'll need both!

* |f we use a state-value function or action-value function as part of our policy
gradient updates, we will need to learn it separately.



Actor-Critic Methods

* Alongside using value functions as baselines, we can also use them to
for bootstrapping. This lets us move away from Monte Carlo updates.

* This gives us all the previous benefits that we’ve seen from
bootstrapping, and the benefits of policy-based methods.

* We call bootstrapping methods which learn the policy function
directly using estimates from value functions Actor-Critic Methods.
* The policy function is the “Actor”.
* The value function is the “Critic”.



Types of Reinforcement Learning Methods

e Value-Based RL

* Approximates the optimal action-value function Q*(s, a). Actor-Critic
methods

do both!

* Policy-Based RL
* Directly search the policy-space for the optimal policy 7™ (als).

Deep RL uses deep neural networks to
represent the value function or policy

. 48
N.B. these are not mutually exclusive!



Deep Deterministic Policy Gradients

 DDPG is an actor-critic algorithm
for continuous action-spaces.

* It makes use of many of DQN’s
tricks, such as replay buffers and
target networks.

* It is off-policy, so can make use
of old experiences (unlike
REINFORCE).

* It makes policy-gradient updates -
maximising E[Q (s, a)].

\ Recall: We maximised E[R(7)] earlier! 49

Video Credit: Sam Kirkiles



https://www.youtube.com/channel/UCdZXjYvK6W6KsmQrrpwtHmQ

DDPG Network Architecture

Actor Network (Policy-Network)

Layer Layers Layer
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DDPG Network Architecture

Critic Network (Q-Network)

Layer Layers Layer
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DDPG Network Architecture

Actor Network (Policy-Network)

Critic Network (Q-Network)




Algorithm: Deep Deterministic Policy Gradients (DDPG)
Initialise replay memory D to capacity N
Initialise critic network Q@ with random weights 89, actor network = with weights 87

Initialise target critic network Q with weights 8¢ = 62, target actor network # with weights 8™ = ™
Initialise target network learning rate 5 € (0,1]

For episode = 1, M do

Initialise random process v for action exploration

Initialise initial state s,

Fort =1,T do
Select action a; = m(s;) + NV;
Execute action a; and observe reward r;, 1, next state s; 4
Store transition (s¢, a¢, 7441, Se+1) IN D
Sample random minibatch of transitions (s;, a;, 741, Sj+1) from D

Sety; =1j41 + yQ (5j+1rﬁ(5j+1))
Perform gradient descent step V4o (yj - Q(s;, aj))z on critic

Perform gradient ascent step VgrE [Q (sj, n(sj))] on actor

Update target networks 89 « 09 + (1 — )82, 8™« O™ + (1 — B)O™
End For
End For



Algorithm: Deep Deterministic Policy Gradients (DDPG)
Initialise replay memory D to capacity N < Pre-Fill Replay Buffer
Initialise critic network Q@ with random weights 89, actor network = with weights 87

Initialise target critic network Q with weights 8¢ = 62, target actor network # with weights 8™ = ™
Initialise target network learning rate 5 € (0,1]

For episode = 1, M do

Initialise random process v for action exploration

Initialise initial state s,

Fort =1,T do
Select action a; = m(s;) + NV;
Execute action a; and observe reward r;, 1, next state s; 4
Store transition (s¢, ag, Te41, Sg+1) IN D < Store Experience in Replay Buffer
Sample random minibatch of transitions (s;, a;, 741, Sj+1) from D < Sample From Replay Buffer

Sety; =1j41 + yQ (5j+1rﬁ(5j+1))

2
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Perform gradient ascent step VgrE [Q (sj, n(sj))] on actor

Update target networks 89 « 09 + (1 — )82, 8™« O™ + (1 — B)O™
End For
End For



Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory D to capacity N

Initialise critic network Q@ with random weights 89, actor network = with weights 87

Initialise target critic network Q with weights 8¢ = 62, target actor network # with weights 8™ = ™
Initialise target network learning rate 5 € (0,1] \
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2
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Perform gradient ascent step VgrE [Q (sj, n(sj))] on actor

Update target networks 89 « B9 + (1 — )69, ™« O™ + (1 — f)§™ <+ Update Target Networks
End For
End For
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In Today’s Lecture, We...

* Introduced policy-based methods as an alternative to value-based
methods.

* Discussed why policy-based method are useful for solving problems where
the optimal policy is stochastic.

* Derived the policy-gradient from first principles.
* Looked at a concrete Monte-Carlo Policy-Gradient algorithm, REINFORCE.

* Introduced baseline functions as a method of reducing the variance in our
policy gradient updates.

* Introduced actor-critic methods, which combine ideas from both value-
based and policy-based RL methods.

* Looked at a concrete actor-critic algorithm, DDPG.
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