Policy Gradient & Actor-Critic Methods Recap

Dan Beechey djeb20@bath.ac.uk

Reinforcement Learning Department of Computer Science University of Bath

Outline

- Introduction to Policy-Based Methods.
- Deriving A Simple Policy Gradient
- The REINFORCE Algorithm
 - Reward-To-Go Policy Gradient
 - Baseline Functions
- Actor-Critic Methods
- The Deep Deterministic Policy Gradient (DDPG) Algorithm

Types of Reinforcement Learning Methods

• Value-Based RL

• Approximates the **optimal action-value function** $Q^*(s, a)$.

Last Lecture

Deep RL uses deep neural networks to represent the value function

Types of Reinforcement Learning Methods

- Value-Based RL
 - Approximates the **optimal action-value function** $Q^*(s, a)$.
- Policy-Based RL
 - Directly search the policy-space for the **optimal policy** $\pi^*(a|s)$.

This Lecture

Deep RL uses deep neural networks to represent the value function or policy.

Why Policy-Based Methods?

- So far, we have worked with **value-based** methods.
 - We'd learn the action-value function, then derive a policy (e.g. ϵ -greedy).
- What if the optimal policy is **stochastic**?
 - Value-based methods have no natural way of dealing with this.

• Instead, could we learn the optimal policy directly?

Value-Based Deep RL Methods

 $Q_{\theta}(s, a)$ = Expected return from choosing action a in state s and following some policy π thereafter, given parameters θ .

- We can represent our action-value function as some differentiable function of state s and action a with parameters θ.
 - E.g. as a Neural Network.
- We can then optimise our Q-function via stochastic gradient descent.

Policy-Based Deep RL Methods

 $\pi_{\theta}(a|s) = \text{Probability of choosing action } a$ given state s and policy parameters θ .

- We can represent the policy as some differentiable function of the state s with parameters θ .
 - E.g. as a Neural Network.
- We can then optimise the policy via stochastic gradient descent.

Q-Network

Policy Network

State = (Wall to North, Wall to South, Wall to East, Wall to West)

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations!

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations! A deterministic policy would not work well here.

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations! A stochastic policy would work much better!

 $\pi_{\theta}(a|s) = \text{Probability of choosing action } a$ given state s and policy parameters θ .

 $\pi_{\theta}(a|s) = \text{Probability of choosing action } a$ given state s and policy parameters θ .

• $J(\pi_{\theta})$ is some **objective function** for our policy, which we aim to maximise (e.g. undiscounted expected return).

 $\pi_{\theta}(a|s) = \text{Probability of choosing action } a$ given state s and policy parameters θ .

- $J(\pi_{\theta})$ is some **objective function** for our policy, which we aim to maximise (e.g. undiscounted expected return).
- Policy gradient update rule: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \nabla_{\boldsymbol{\theta}_t} J(\pi_{\boldsymbol{\theta}_t})$

 $\pi_{\theta}(a|s) = \text{Probability of choosing action } a$ given state s and policy parameters θ .

- $J(\pi_{\theta})$ is some **objective function** for our policy, which we aim to maximise (e.g. undiscounted expected return).
- Policy gradient update rule: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \nabla_{\boldsymbol{\theta}_t} J(\pi_{\boldsymbol{\theta}_t})$
- $\nabla_{\theta} J(\pi_{\theta})$ is called the **policy gradient**.

- Policy gradient update: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \nabla_{\boldsymbol{\theta}_t} J(\pi_{\boldsymbol{\theta}_t})$
- In order to use this update rule in an algorithm, we need an expression for the policy gradient which we can numerically compute.
- This expression should depend only on π , $\nabla_{\theta}\pi$, θ_t , and J.
- We will derive this expression for the policy gradient over the next few slides, and then use it later on in an actual learning algorithm.

A Few Definition Reminders...

- A state-action **trajectory** $\tau = (S_0, A_0, R_0, ..., S_{T-1}, A_{T-1}, R_{T-1}, S_T).$
- The return of a trajectory $G(\tau) = \sum_{t=0}^{T} R_t$
 - We'll be using the undiscounted return, simply the sum of rewards.
- Our objective function $J(\pi_{\theta})$ is the expected return: $J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}}[G(\tau)]$
- The **expected value** of a continuous random variable X with probability density function p(x) is $\int_{-\infty}^{\infty} x \cdot P(x)$.

- We need to find the gradient of our objective function.
 - Assume that we are using the undiscounted expected return as our objective function, and we have full access to π , $\log \pi$ and their derivatives.
- Let's derive this step-by-step together!
- We'll assume that we'll have access to π_{θ} , $\log \pi_{\theta}$ and their derivatives.
 - When using a deep neural network, we will do (e.g. via backpropagation).

• Step 1: What are we trying to find?

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \nabla_{\boldsymbol{\theta}} \mathcal{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} [G(\tau)]$$

• Step 2: Expand Expectation

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} E_{\tau \sim \pi_{\theta}} [G(\tau)]$$
$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \int_{\tau} P(\tau | \theta) G(\tau)$$

• Step 3: Bring Gradient Under Integral

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \int_{\tau} P(\tau | \theta) G(\tau)$$
$$\nabla_{\theta} J(\pi_{\theta}) = \int_{\tau} \nabla_{\theta} P(\tau | \theta) G(\tau)$$

• Step 4: Log-Derivative Trick

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{\tau} \nabla_{\theta} P(\tau | \theta) G(\tau) \qquad \checkmark$$
$$\nabla_{\theta} J(\pi_{\theta}) = \int_{\tau} P(\tau | \theta) \nabla_{\theta} \log P(\tau | \theta) G(\tau) \qquad \checkmark$$

• Step 5: Return to Expectation Form

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{\tau} P(\tau | \theta) \nabla_{\theta} \log P(\tau | \theta) G(\tau) \quad \checkmark$$
$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log P(\tau | \theta) G(\tau)] \quad \checkmark$$

• Step 5: Return to Expectation Form

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{\tau} P(\tau | \theta) \nabla_{\theta} \log P(\tau | \theta) G(\tau) \quad \checkmark$$
$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log P(\tau | \theta) G(\tau)] \quad \checkmark$$

Recall that:

$$\log \prod_{i=0}^{n} P(x_i) = \sum_{i=0}^{n} \log P(x_i)$$

• What is
$$\nabla_{\theta} \log P(\tau|\theta)$$
?

$$P(\tau|\theta) = P(S_0) \cdot \prod_{t=0}^{T} P(S_t, A_t, R_t, S_{t+1}) \cdot \pi_{\theta}(A_t|S_t)$$

$$\log P(\tau|\theta) = \log P(S_0) + \sum_{t=0}^{T} \log P(S_t, A_t, R_t, S_{t+1}) + \log \pi_{\theta}(A_t|S_t)$$

$$\nabla_{\theta} \log P(\tau|\theta) = \nabla_{\theta} \log P(S_0) + \sum_{t=0}^{T} \nabla_{\theta} \log P(S_{t+1}, R_t|S_t, A_t) + \nabla_{\theta} \log \pi_{\theta}(A_t|S_t)$$

Recall that:

$$\log \prod_{i=0}^{n} P(x_i) = \sum_{i=0}^{n} \log P(x_i)$$

• What is
$$\nabla_{\theta} \log P(\tau|\theta)$$
?

$$P(\tau|\theta) = P(S_0) \cdot \prod_{t=0}^{T} P(S_t, A_t, R_t, S_{t+1}) \cdot \pi_{\theta}(A_t|S_t)$$

$$\log P(\tau|\theta) = \log P(S_0) + \sum_{t=0}^{T} \log P(S_t, A_t, R_t, S_{t+1}) + \log \pi_{\theta}(A_t|S_t)$$

$$\nabla_{\theta} \log P(\tau|\theta) = \nabla_{\theta} \log P(S_0) + \sum_{t=0}^{T} \nabla_{\theta} \log P(S_{t+1}, R_t|S_t, A_t) + \nabla_{\theta} \log \pi_{\theta}(A_t|S_t)$$

$$Z_{\theta}$$

• Step 6: Substitute Grad-Log-Prob of Trajectory

 $\nabla_{\theta} J(\pi_{\theta}) = \mathbf{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log P(\tau | \theta) G(\tau)]$ $\nabla_{\theta} J(\pi_{\theta}) = \mathbf{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(A_{t} | S_{t}) G(\tau) \right]$

• All Done!

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbf{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) G(\tau) \right]$$

We now have an expression for our policy-gradient which depends only on π , log π , their derivatives.

• All Done!

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) \approx \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) G(\tau)$$

Since our expression is an expectation, we can approximate it by taking the sample mean over many trajectories $\tau \in D$.

Given a trajectory au

$$\begin{split} \nabla_{\theta} J(\pi_{\theta}) &= \nabla_{\theta} \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} [R(\tau)] \\ &= \nabla_{\theta} \int_{\tau} P(\tau|\theta) R(\tau) & \text{Expand expectation} \\ &= \int_{\tau} \nabla_{\theta} P(\tau|\theta) R(\tau) & \text{Bring gradient under integral} \\ &= \int_{\tau} P(\tau|\theta) \nabla_{\theta} \log P(\tau|\theta) R(\tau) & \text{Log-derivative trick} \\ &= \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log P(\tau|\theta) R(\tau)] & \text{Return to expectation form} \\ &\therefore \nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) R(\tau) \right] & \text{Expression for grad-log-prob} \end{split}$$

We can approximate this with the sample mean of many trajectories $\tau \in D$:

$$\nabla_{\theta} J(\pi_{\theta}) \approx \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau)$$

Image Credit: OpenAI

Policy Network – Action Selection

Policy Network – Action Selection

- Raw output of our network won't actually be probabilities!
 - They'll be action preferences.

Policy Network – Action Selection

- Raw output of our network won't actually be probabilities!
 - They'll be action preferences.
- We can use soft-max over our network's outputs to perform action selection.

$$\pi_{\theta}(A_i|s) = \frac{e^{y_{A_i}}}{\sum_j e^{y_{A_j}}}$$

Initialise parameters: step size $\alpha \in (0,1]$ Initialise policy network π with parameters θ

For episode = 1, *M* do Generate an episode trajectory $\tau \sim \pi_{\theta}$ For t = 1, T - 1 do $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ $\theta \leftarrow \theta + \alpha \gamma^t \nabla_{\theta} \log \pi_{\theta}(A_t | S_t) G$ End For End For

Initialise parameters: step size $\alpha \in (0,1]$ Initialise policy network π with parameters θ

For episode = 1, *M* do Generate an episode trajectory $\tau \sim \pi_{\theta}$ For t = 1, T - 1 do $G \leftarrow \sum_{k=t+1}^{T} R_k$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(A_t | S_t) G$ End For End For

Initialise parameters: step size $\alpha \in (0,1]$ Initialise policy network π with parameters θ

For episode = 1, *M* do Generate an episode trajectory $\tau \sim \pi_{\theta}$ For t = 1, T - 1 do $G \leftarrow \sum_{k=t+1}^{T} R_k$ — Sample Return $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(A_t | S_t) G$ End For Our Policy-Gradient!

Initialise parameters: step size $\alpha \in (0,1]$ Initialise policy network π with parameters θ

For episode = 1, M do Generate an episode trajectory $\tau \sim \pi_{\theta}$ For t = 1, T - 1 do $G \leftarrow \sum_{k=t+1}^{T} R_k$ Sample Return $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(A_t | S_t) G$ End For Our Policy-Gradient! End For

Reward-To-Go Policy Gradient

 Currently, we update the log-probabilities of each action in proportion to the sum of all rewards taken during a trajectory.

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbf{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) G(\tau) \right]_{\text{Sum of all rewards.}}$$

 This doesn't make much sense. Instead, we could only reinforce actions based on the rewards earned after they were executed.

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbf{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) \sum_{t'=t}^{T} r(S_{t'}, A_{t'}, S_{t'+1}) \right]$$

Sum of all rewards after time-step t.

Advantages of Policy-Gradient Methods

• Deals naturally with stochastic policies.

• Stochastic policies explore naturally.

Stronger convergence guarantees than value-based methods.

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbf{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) \left(\sum_{t'=t}^{T} r(S_{t'}, A_{t'}, S_{t'+1}) \right) \right]$$

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbf{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) \left(\sum_{t'=t}^{T} r(S_{t'}, A_{t'}, S_{t'+1}) \right) \right]$$

- Currently, there will be **high variance in the magnitude of our** updates.
 - Trajectories may vary a lot between runs.
 - Some states will have a high value, others will have a low value.
- We can't avoid variance due to stochasticity in our policy or the environment.
- We can take into account variance in state values.

- We want to reduce the variance in the magnitude of our updates.
- We can reduce the variance of the updates by subtracting a **baseline** function $b(s_t)$.

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbf{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) \left(\sum_{t'=t}^{T} r(S_{t'}, A_{t'}, S_{t'+1}) - b(S_t) \right) \right]$$

• We can use any function as a baseline, as long as it doesn't change our policy gradient in expectation.

- We want to reduce the variance in the magnitude of our updates.
- We can reduce the variance of the updates by subtracting a **baseline** function $b(s_t)$.

$$\nabla_{\boldsymbol{\theta}} J(\pi_{\boldsymbol{\theta}}) = \mathbf{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) \left(\sum_{t'=t}^{T} r(S_{t'}, A_{t'}, S_{t'+1}) - V_{\pi}(S_t) \right) \right]$$

- We can use any function as a baseline, as long as it doesn't change our policy gradient in expectation.
- The value function $V_{\pi}(s_t)$ is a useful baseline function.

Combining Value & Policy-Based Methods

- Using baseline functions, we can combine value-based methods and policy-based methods!
 - We can use the state-value or action-value function as baselines!
- Instead of having one function representing either the value function or a policy, we'll need both!
 - If we use a state-value function or action-value function as part of our policy gradient updates, we will need to learn it separately.

Actor-Critic Methods

- Alongside using value functions as baselines, we can also use them to for bootstrapping. This lets us move away from Monte Carlo updates.
- This gives us all the previous benefits that we've seen from bootstrapping, and the benefits of policy-based methods.
- We call bootstrapping methods which learn the policy function directly using estimates from value functions **Actor-Critic Methods**.
 - The policy function is the "Actor".
 - The value function is the "Critic".

Types of Reinforcement Learning Methods

- Value-Based RL
 - Approximates the **optimal action-value function** $Q^*(s, a)$.
- Policy-Based RL
 - Directly search the policy-space for the **optimal policy** $\pi^*(a|s)$.

Actor-Critic methods do both!

Deep RL uses deep neural networks to represent the value function or policy

Deep Deterministic Policy Gradients

- DDPG is an actor-critic algorithm for continuous action-spaces.
- It makes use of many of DQN's tricks, such as replay buffers and target networks.
- It is off-policy, so can make use of old experiences (unlike REINFORCE).
- It makes policy-gradient updates maximising E[Q(s, a)].

Recall: We maximised $E[R(\tau)]$ earlier!

Video Credit: Sam Kirkiles

49

DDPG Network Architecture

Actor Network (Policy-Network)

DDPG Network Architecture

Critic Network (Q-Network)

DDPG Network Architecture

Initialise replay memory *D* to capacity *N* Initialise critic network *Q* with random weights θ^Q , actor network π with weights θ^{π} Initialise target critic network \hat{Q} with weights $\hat{\theta}^Q = \theta^Q$, target actor network $\hat{\pi}$ with weights $\hat{\theta}^{\pi} = \theta^{\pi}$ Initialise target network learning rate $\beta \in (0,1]$

For episode = 1, M do

Initialise random process \mathcal{N} for action exploration Initialise initial state s_1

For t = 1, T do

Select action $a_t = \pi(s_t) + \mathcal{N}_t$ Execute action a_t and observe reward r_{t+1} , next state s_{t+1} Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in D Sample random minibatch of transitions $(s_i, a_i, r_{i+1}, s_{i+1})$ from D Set $y_j = r_{j+1} + \gamma \hat{Q}\left(s_{j+1}, \hat{\pi}(s_{j+1})\right)$ Perform gradient descent step $\nabla_{\theta Q} (y_j - Q(s_j, a_j))^2$ on critic Perform gradient ascent step $\nabla_{\theta} \pi E \left[Q \left(s_j, \pi(s_j) \right) \right]$ on actor Update target networks $\hat{\theta}^Q \leftarrow \beta \theta^Q + (1 - \beta) \hat{\theta}^Q$, $\hat{\theta}^\pi \leftarrow \beta \theta^\pi + (1 - \beta) \hat{\theta}^\pi$ **End For End For**

Initialise replay memory D to capacity $N \leftarrow Pre-Fill \text{ Replay Buffer}$ Initialise critic network Q with random weights θ^Q , actor network π with weights θ^{π} Initialise target critic network \hat{Q} with weights $\hat{\theta}^Q = \theta^Q$, target actor network $\hat{\pi}$ with weights $\hat{\theta}^{\pi} = \theta^{\pi}$ Initialise target network learning rate $\beta \in (0,1]$

For episode = 1, M do Initialise random process \mathcal{N} for action exploration Initialise initial state s_1 For t = 1, T do Select action $a_t = \pi(s_t) + \mathcal{N}_t$ Execute action a_t and observe reward r_{t+1} , next state s_{t+1} Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in *D* \leftarrow Store Experience in Replay Buffer Sample random minibatch of transitions $(s_i, a_i, r_{i+1}, s_{i+1})$ from $D \leftarrow Sample$ From Replay Buffer Set $y_j = r_{j+1} + \gamma \hat{Q}\left(s_{j+1}, \hat{\pi}(s_{j+1})\right)$ Perform gradient descent step $\nabla_{\theta Q} (y_j - Q(s_j, a_j))^2$ on critic Perform gradient ascent step $\nabla_{\theta} \pi E \left[Q \left(s_j, \pi(s_j) \right) \right]$ on actor Update target networks $\hat{\theta}^Q \leftarrow \beta \theta^Q + (1 - \beta) \hat{\theta}^Q$, $\hat{\theta}^\pi \leftarrow \beta \theta^\pi + (1 - \beta) \hat{\theta}^\pi$ **End For**

End For

Initialise replay memory *D* to capacity *N* Initialise critic network *Q* with random weights θ^Q , actor network π with weights θ^{π} Initialise target critic network \hat{Q} with weights $\hat{\theta}^Q = \theta^Q$, target actor network $\hat{\pi}$ with weights $\hat{\theta}^{\pi} = \theta^{\pi}$ Initialise target network learning rate $\beta \in (0,1]$

Initialise Target Networks For episode = 1, M do Initialise random process \mathcal{N} for action exploration Initialise initial state s_1 For t = 1, T do Select action $a_t = \pi(s_t) + \mathcal{N}_t$ Execute action a_t and observe reward r_{t+1} , next state s_{t+1} Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in D Sample random minibatch of transitions $(s_i, a_i, r_{i+1}, s_{i+1})$ from D Set $y_j = r_{j+1} + \gamma \hat{Q}\left(s_{j+1}, \hat{\pi}(s_{j+1})\right)$ Generate Target Using Target Networks Perform gradient descent step $\nabla_{\theta Q} (y_j - Q(s_j, a_j))^2$ on critic Perform gradient ascent step $\nabla_{\theta} \pi E \left[Q \left(s_j, \pi(s_j) \right) \right]$ on actor Update target networks $\hat{\theta}^Q \leftarrow \beta \theta^Q + (1 - \beta) \hat{\theta}^Q$, $\hat{\theta}^\pi \leftarrow \beta \theta^\pi + (1 - \beta) \hat{\theta}^\pi$ \leftarrow Update Target Networks **End For** 55 **End For**

Initialise replay memory *D* to capacity *N* Initialise critic network *Q* with random weights θ^Q , actor network π with weights θ^{π} Initialise target critic network \hat{Q} with weights $\hat{\theta}^Q = \theta^Q$, target actor network $\hat{\pi}$ with weights $\hat{\theta}^{\pi} = \theta^{\pi}$ Initialise target network learning rate $\beta \in (0,1]$

For episode = 1, M do

Initialise random process \mathcal{N} for action exploration Initialise initial state s_1

For t = 1, T do

Select action $a_t = \pi(s_t) + \mathcal{N}_t$ Execute action a_t and observe reward r_{t+1} , next state s_{t+1} Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in D Sample random minibatch of transitions $(s_i, a_i, r_{i+1}, s_{i+1})$ from D Set $y_j = r_{j+1} + \gamma \hat{Q}\left(s_{j+1}, \hat{\pi}(s_{j+1})\right)$ Perform gradient descent step $\nabla_{\theta Q} (y_j - Q(s_j, a_j))^2$ on critic Perform gradient ascent step $\nabla_{\theta} \pi E \left[Q \left(s_j, \pi(s_j) \right) \right]$ on actor Update target networks $\hat{\theta}^Q \leftarrow \beta \theta^Q + (1 - \beta) \hat{\theta}^Q$, $\hat{\theta}^\pi \leftarrow \beta \theta^\pi + (1 - \beta) \hat{\theta}^\pi$ **End For End For**

Initialise replay memory *D* to capacity *N* Initialise critic network *Q* with random weights θ^Q , actor network π with weights θ^{π} Initialise target critic network \hat{Q} with weights $\hat{\theta}^Q = \theta^Q$, target actor network $\hat{\pi}$ with weights $\hat{\theta}^{\pi} = \theta^{\pi}$ Initialise target network learning rate $\beta \in (0,1]$

$\mathbf{For} \text{ episode} = 1, M \mathbf{do}$

Initialise random process \mathcal{N} for action exploration Initialise initial state s_1

 $\mathbf{For} t = 1, T \mathbf{do}$

Select action $a_t = \pi(s_t) + \mathcal{N}_t$

Execute action a_t and observe reward r_{t+1} , next state s_{t+1}

Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in D

Sample random minibatch of transitions $(s_j, a_j, r_{j+1}, s_{j+1})$ from D

Set $y_j = r_{j+1} + \gamma \widehat{Q}\left(s_{j+1}, \widehat{\pi}(s_{j+1})\right)$

Perform gradient descent step $\nabla_{\theta^Q} \left(y_j - Q(s_j, a_j) \right)^2$ on critic Perform gradient ascent step $\nabla_{\theta^{\pi}} \mathbb{E} \left[Q\left(s_j, \pi(s_j) \right) \right]$ on actor Update target networks $\hat{\theta}^Q \leftarrow \beta \theta^Q + (1 - \beta) \hat{\theta}^Q$, $\hat{\theta}^{\pi} \leftarrow \beta \theta^{\pi} + (1 - \beta) \hat{\theta}^{\pi}$ End For End For

Initialise replay memory *D* to capacity *N* Initialise critic network *Q* with random weights θ^Q , actor network π with weights θ^{π} Initialise target critic network \hat{Q} with weights $\hat{\theta}^Q = \theta^Q$, target actor network $\hat{\pi}$ with weights $\hat{\theta}^{\pi} = \theta^{\pi}$ Initialise target network learning rate $\beta \in (0,1]$

For episode = 1, M do

Initialise random process \mathcal{N} for action exploration Initialise initial state s_1

For t = 1, T do

Select action $a_t = \pi(s_t) + \mathcal{N}_t$ Execute action a_t and observe reward r_{t+1} , next state s_{t+1} Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in D Sample random minibatch of transitions $(s_i, a_j, r_{j+1}, s_{j+1})$ from D Set $y_j = r_{j+1} + \gamma \hat{Q}\left(s_{j+1}, \hat{\pi}(s_{j+1})\right)$ Perform gradient descent step $\nabla_{\theta Q} (y_j - Q(s_j, a_j))^2$ on critic Perform gradient ascent step $\nabla_{\theta^{\pi}} \mathbb{E} \left[Q \left(s_j, \pi(s_j) \right) \right]$ on actor Update target networks $\hat{\theta}^Q \leftarrow \beta \theta^Q + (1 - \beta) \hat{\theta}^Q$, $\hat{\theta}^\pi \leftarrow \beta \theta^\pi + (1 - \beta) \hat{\theta}^\pi$ **End For End For**

Initialise replay memory *D* to capacity *N* Initialise critic network *Q* with random weights θ^Q , actor network π with weights θ^{π} Initialise target critic network \hat{Q} with weights $\hat{\theta}^Q = \theta^Q$, target actor network $\hat{\pi}$ with weights $\hat{\theta}^{\pi} = \theta^{\pi}$ Initialise target network learning rate $\beta \in (0,1]$

For episode = 1, M do

Initialise random process \mathcal{N} for action exploration Initialise initial state s_1

For t = 1, T do

Select action $a_t = \pi(s_t) + \mathcal{N}_t$ Execute action a_t and observe reward r_{t+1} , next state s_{t+1} Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in D Sample random minibatch of transitions $(s_i, a_j, r_{j+1}, s_{j+1})$ from D Set $y_j = r_{j+1} + \gamma \hat{Q}\left(s_{j+1}, \hat{\pi}(s_{j+1})\right)$ Perform gradient descent step $\nabla_{\theta^Q} (y_j - Q(s_j, a_j))^2$ on critic Perform gradient ascent step $\nabla_{\theta} \pi E \left[Q \left(s_j, \pi(s_j) \right) \right]$ on actor Update target networks $\hat{\theta}^Q \leftarrow \beta \theta^Q + (1 - \beta) \hat{\theta}^Q, \hat{\theta}^\pi \leftarrow \beta \theta^\pi + (1 - \beta) \hat{\theta}^\pi$ **End For End For**

In Today's Lecture, We...

- Introduced policy-based methods as an alternative to value-based methods.
- Discussed why policy-based method are useful for solving problems where the optimal policy is stochastic.
- Derived the policy-gradient from first principles.
- Looked at a concrete Monte-Carlo Policy-Gradient algorithm, REINFORCE.
- Introduced **baseline functions** as a method of reducing the variance in our policy gradient updates.
- Introduced actor-critic methods, which combine ideas from both valuebased and policy-based RL methods.
- Looked at a concrete actor-critic algorithm, DDPG.

Acknowledgements

- Chapter 13, Reinforcement Learning (2nd Ed.), Sutton & Barto 2018
- David Silver's Policy Gradient Lecture
- OpenAl Spinning Up
 - OpenAl Spinning Up Policy Gradient Derivation
- <u>REINFORCE Paper, Williams 1992(!)</u>
- DDPG Paper, Lillicrap et al. 2016