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Why explain decision-making? How to explain decision-making
* Reinforcement learning agents typically learn to act but not to explain * Prior work [1, 2] attributes decisions to features of an agent’s observations
themselves. using Shapley values [3], a theory-driven approach to fairly assigning credit.
* This hinders deployment in settings where accountability and trust are * But computing Shapley values exactly is infeasible in real-world settings.

essential.

OUR CONTRIBUTION

FastSVERL: A scalable method for explaining decision-making
by attributing actions to features of an agent’s observations.
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You're playing Minesweeper—what’s your next move?

FastSVERL handles off-policy data and adapts to changing behaviour, enabling Shapley-based interpretability in practical reinforcement learning settings.

How it works (if you’re interested)

What are Shapley-based explanations? Approximating the characteristic function
We explain an agent’s decision by attributing how each feature influences the We approximate the characteristic function #5(C) with a model #(s,a|C; 8)
probability of taking an action, n(s,a). trained to minimise prediction error:
To do so, we consider how the action probability changes when different features L(B)= E IEE I'E%c \w(s, a) — mw(s,a|C; ﬂ)\z
are known or unknown. This is captured by a characteristic function #%(C), which p*{s) Unifla) Unif(C)
measures the expected probability of action a when only features in ¢ € F are
known:
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seS+t

Shapley values assign credit to each feature based on its average marginal

contribution across all feature subsets: We approximate the Shapley value summation with a second model

é(s,a;0) : S x A — RF! trained to minimise a least-squares objective:

» Clt-(FI =1 =1)! W - 2
¢'(7g) = 75 (CU{i}) — 75 (C)] LO)= E E E|[7C)—70)—- ¢(s,a;0
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These values uniquely satisfy axioms formalising fair credit assignment. where  p(C) n—1

(i¢) - ICl - (n = [C])
But exact computation is infeasible in complex settings: the total cost per
explanation is 02”1 - |S|), 2! expectations over the state space s.

These models amortise the cost of Shapley value approximation across
Both characteristic functions and Shapley values must be approximated. all states and actions.
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