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AI playing as X in Tic-Tac-Toe.

Motivation
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Reinforcement Learning

Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT Press, chapter 1 pp.1-13. 5
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Rewards

• 1 for winning

• 0 for drawing

• -1 for losing



Reinforcement Learning

Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT Press, chapter 1 pp.1-13.

An agent selects actions according to policy 𝜋.

This policy is often defined using the value function 𝑉𝜋(𝑠) = 𝔼 σ𝑡=1
∞ 𝑟𝑡|𝑠0 = 𝑠 .
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A cooperative game is a set of players ℱ and a characteristic value function 
𝑣: 2 ℱ → ℝ.

Shapley values are the unique solution to a set of four mathematical axioms that 
specify the fair contributions of players to the outcome of a cooperative game.

Shapley Values
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• Axiom 1 (Efficiency) σ𝑖∈ℱ𝜙𝑖 𝑣 = 𝑣 ℱ

• Axiom 2 (Nullity) 𝜙𝑖 𝑣 = 0 if 𝑣 𝐶 ∪ {𝑖} = 𝑣 𝐶 ∀𝐶 ⊆ ℱ ∖ {𝑖}

• Axiom 3 (Symmetry) 𝜙𝑖 𝑣 = 𝜙𝑗 𝑣 if 𝑣 𝐶 ∪ {𝑖} = 𝑣 𝐶 ∪ {𝑗} ∀𝐶 ⊆ ℱ ∖ {𝑖, 𝑗}

Shapley Values
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Shapley Values for Explaining 
Reinforcement Learning (SVERL)

Explaining Performance (SVERL-Performance)

Local characteristic value function:

Explaining the Value Function

Characteristic value function:

Explaining the Policy

Characteristic value function:
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Explaining Performance (SVERL-Performance)

Explains agent performance from state 𝑠.

Shapley Values for Explaining 
Reinforcement Learning (SVERL)

Explaining the Value Function

Explains the predictions of the value function under the assumption that 
all features will be observed by the agent when acting in the environment.

Explaining the Policy

Explains the probability of selecting each action.
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Shapley values applied to 𝑉𝜋 show the 
contributions of features to the value 
function’s predictions.

SVERL-Performance shows the 
contributions of features to agent 
performance.

Explaining Tic-Tac-Toe
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Explains the behaviour of an agent, but more is to be understood about 
agent performance.

Shapley Values Applied to 𝝅
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Explaining Performance in Minesweeper

Features are the 16 grid squares. 

One square contributes the most to 
performance.

Thank you for listening!
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