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Learn a policy 𝝅 ∶ 𝓢 → 𝜟(𝓐) that maps each state to a probability distribution

over actions, maximising the expected return:

𝔼 𝐺𝑡 = 𝔼 σ𝑘=0 𝛾
𝑘𝑅𝑡+𝑘+1

What is Reinforcement Learning?

Reward

ActionState

Environment

Agent

[11]



3Stratospheric Balloons [15] Nuclear Fusion Reactor Control [18][21]

Atari [4]

What Can Reinforcement Learning Do?

StarCraft II [14] Gran Turismo [20]AlphaGo [6][9][16] Matrix Multiplication 
[19]

Reinforcement learning 

agents do not explain 

their actions.



Certain features of an agent’s observations influence 

how they interact with their environment.

Contribution: A theoretical and computational 

framework for explaining agent-environment 

interactions using the influence of features.
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Understanding Agent-Environment Interactions



2 Miles

10 Miles

● Behaviour

● Outcome

● Prediction

5

What Needs Explaining?

Beechey, D., Smith, T.M. and Şimşek, Ö., 2023, July. Explaining 

reinforcement learning with Shapley values. In International 

Conference on Machine Learning (pp. 2003-2014). PMLR.



Compute the influence of features by observing the 

effect of their removal.

Features are interdependent; removing one feature 

does not properly capture its contribution.
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Computing Feature Influence
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Shapley Values

[1]
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Shapley Value Axioms

[1]



Shapley Values for Explaining 
Reinforcement Learning (SVERL)

Beechey, D., Smith, T. and Şimşek, Ö., 2025. A Theoretical Framework for Explaining 

Reinforcement Learning with Shapley Values. arXiv preprint arXiv:2505.07797.
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Shapley Values for Explaining Reinforcement Learning



11

Explaining Behaviour in Taxi
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Explaining Outcomes in Taxi
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Explaining Prediction in Taxi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



How to Approximate SVERL for Real-
World Applications

Beechey, D. and Şimşek, Ö., 2025. Approximating Shapley explanations in reinforcement 

learning. In Advances in Neural Information Processing Systems.
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Computing SVERL Exactly is Intractable
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Explaining Behaviour in Mastermind



1. Shapley Values for Explaining Reinforcement Learning (SVERL)

○ Explaining behaviour

○ Explaining outcomes

○ Explaining prediction

2. How to approximate SVERL in large-scale domains.
○ Parametric approximations of explanations

○ Learnt off-policy for online learning

○ Continually adapt to evolving agent behaviour

Future Work

○ A real-world application of SVERL

○ User studies
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Thank you for listening!
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