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What is Reinforcement Learning?

Environment

State Action

Reward

Agent

Learn a policy w: § - A(A) that maps each state to a probability distribution
over actions, maximising the expected return:
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What Can Reinforcement Learning Do?
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Nuclear Fusion Reactor Control [18][21]

Matrix Multiplication
[19]

Gran Turismo [20]

Reinforcement learning
agents do not explain
their actions.



Understanding Agent-Environment Interactions

Certain features of an agent’s observations influence
how they interact with their environment.

Contribution: A theoretical and computational o
framework for explaining agent-environment m
interactions using the influence of features.




What Needs Explaining?
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Beechey, D., Smith, T.M. and Simsek, O., 2023, July. Explaining

reinforcement learning with Shapley values. In International
Conference on Machine Learning (pp. 2003-2014). PMLR.
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Computing Feature Influence

Compute the influence of features by observing the
effect of their removal.

Features are interdependent; removing one feature
does not properly capture its contribution.




Shapley Values A artai  @BATH

A cooperative game is a set of players F and a characteristic function v(C) : 2% — R.

How to assign the contribution ¢;(v) of player i to the outcome of the game (F,v)?
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Shapley Value Axioms
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Shapley values ¢;(v) are the unique solution to the contribution
assignment problem that satisfies the four axioms of fair contribution.

Efficiency: 0(F) =0(0) + 3,5 b:(v).
Symmetry: ¢i(v) = ¢;(v) it v(CU{i}) =v(CU{j}) VC < F\{ij}.
Nullity: ¢:(v) =0 if v(CU{i})=v(C) VYCCF\{i}.
Linearity: di(ou + Bv) = agi(u) + Bdi(v).
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Shapley Values for Explaining
Reinforcement Learning (SVERL)
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Beechey, D., Smith, T. and Simsek, O., 2025. A Theoretical Framework for Explaining
Reinforcement Learning with Shapley Values. arXiv preprint arXiv:2505.07797.



Shapley Values for Explaining Reinforcement Learning Q art-ai

Explaining Behaviour. The contribution of feature values to the
probability of selecting action a in state s.

79(C) = E[n(S.0) | Se = se] = 3 7(s | se)n(s/,a)
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Explaining Outcome. The contribution of feature values to the
expected return v”(s).

PP
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’ m(s¢, a;) otherwise.

Explaining Prediction. The contribution of feature values to the
predicted expected return 07 (s).

0T(C) € i (se) = E[07(S) | Se = scl = Y p7(s' | se) 07 (s).
s'eSt
10



Explaining Behaviour in Taxi
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Explaining Outcomes in Taxi
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Explaining Prediction in Taxi

Shapley Value
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How to Approximate SVERL for Real-
World Applications

Beechey, D. and Simsek, O., 2025. Approximating Shapley explanationsin reinforcement
learning. In Advances in Neural Information Processing Systems.



Computing SVERL Exactly is Intractable

Characteristics average over states and the distribution p™(s|s¢):

2(C) L E[r(S,a)| Sc = sc] = Y p"(s'| se)n(s’, a)

s'eS

Approximate 7¢(C) with a parametric functién, 7(s,a|C;p)

Shapley values sum over the powerset of features, 2171-1:

oy = 30 T =D e v - me)

Approximate SVERL Wif}\ a parametric ¢E(s, a;0): S x A — RV
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Explaining Behaviour in Mastermind
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Thank you for listening!

1. Shapley Values for Explaining Reinforcement Learning (SVERL)
o Explaining behaviour
o Explaining outcomes
o Explaining prediction

2. How to approximate SVERL in large-scale domains.
O Parametric approximations of explanations
O Learnt off-policy for online learning
o Continually adapt to evolving agent behaviour

Future Work
o Areal-world application of SVERL
o User studies
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