

How to Explain Reinforcement Learning with Shapley Values

Daniel Beechey

Bath Reinforcement Learning Lab CDT in Accountable, Responsible and Transparent AI (ART-AI)

Thomas Smith

tmss20@bath.ac.uk

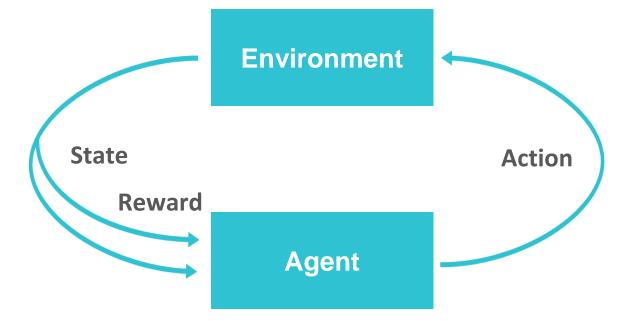
Özgür Şimşek

os435@bath.ac.uk

Beechey, D., Smith, T.M. and Şimşek, Ö., 2023, July. Explaining reinforcement learning with Shapley values. In *International Conference on Machine Learning* (pp. 2003-2014). PMLR.

[11]

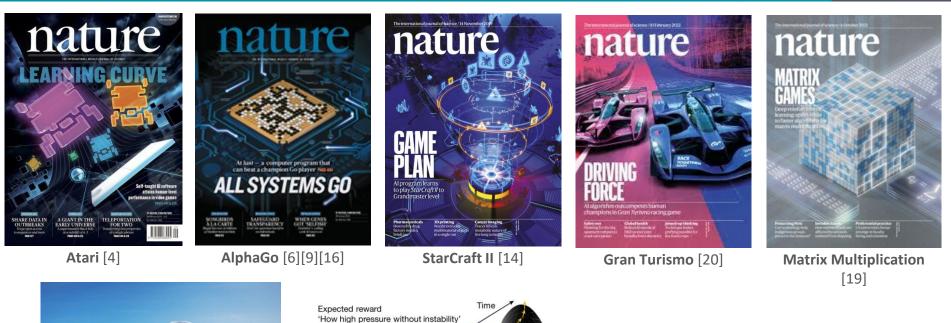
art-ai



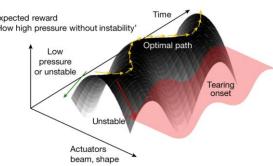
Learn a policy $\pi : S \to \Delta(\mathcal{A})$ that maps each state to a probability distribution over actions, maximising the expected return:

$$\mathbb{E}[G_t] = \mathbb{E}[\sum_{k=0} \gamma^k R_{t+k+1}]$$

What Can Reinforcement Learning Do?



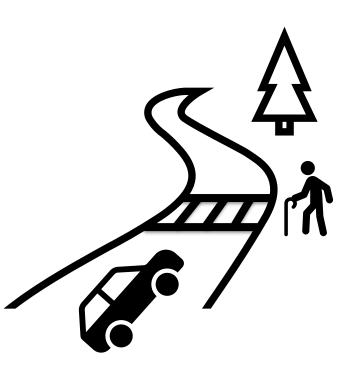
Stratospheric Balloons [15]



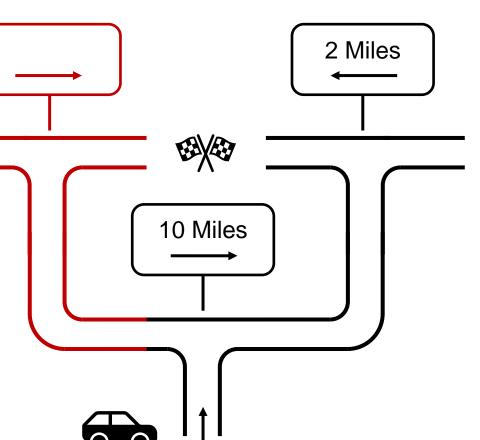
Nuclear Fusion Reactor Control [18][21]

Reinforcement learning agents do not explain their actions. Certain features of an agent's observations influence how they interact with their environment.

Contribution: A mathematical framework for explaining agent-environment interactions using the influence of features.



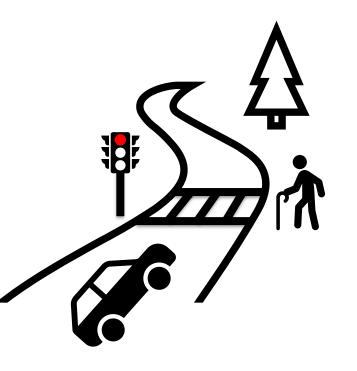
- Arrow directions influence **policy**.
- Arrow directions influence **performance**.
- Distances do not influence policy or performance.
- Destination distances influence value prediction.

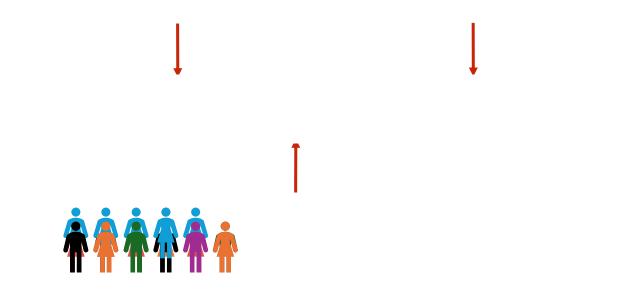


art-ai

Compute the influence of features by observing the behaviour change caused by their removal.

Features are interdependent, removing one feature does not properly capture its influence.



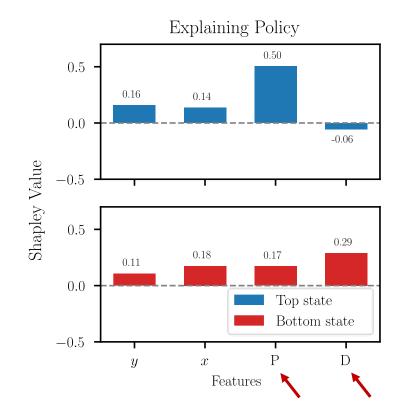


Shapley Values for Explaining Reinforcement Learning (SVERL)

art-ai

A collection of cooperative games played by features of an agent's observations whose outcomes are different aspects of agent-environment interactions.

Explaining Policy. The contribution of feature values to the probability of selecting action a in state s.



R			G
Y		B _P	

R		Р	G
Y		B	

A collection of cooperative games played by features of an agent's observations whose outcomes are different aspects of agent-environment interactions.

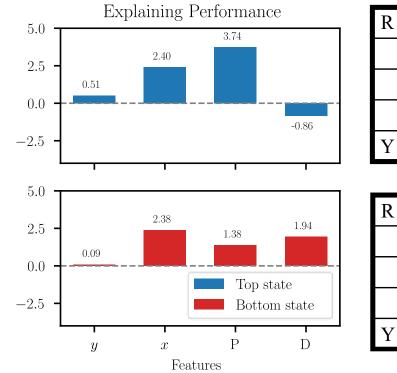
Explaining Policy. The contribution of feature values to the probability of selecting action a in state s.

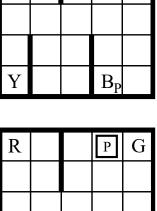
Explaining Performance.

Explaining Value Prediction.

Explaining Performance in Taxi

(ì





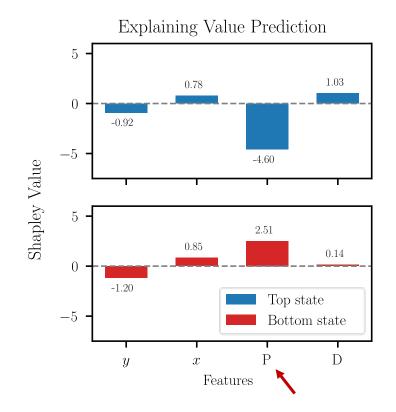
B

A collection of cooperative games played by features of an agent's observations whose outcomes are different aspects of agent-environment interactions.

Explaining Policy. The contribution of feature values to the probability of selecting action a in state s.

Explaining Performance. The contribution of feature values to expected return from state s.

Explaining Value Prediction.



R			G
Y		B _P	

R		Р	G
Y		B	

Related Work

Feature Importance Methods

- Gradient [7]
- Perturbation [10]
- Attention [12]
- 0 LIME [5]

Shapley Values in Supervised Learning O SHAP [3][8] Shapley Values in Reinforcement Learning

• SHAP applied to RL [13][17]

Shapley Values for Explaining Reinforcement Learning (SVERL)

- Explaining policy
- Explaining performance
- Explaining value prediction

Active Research

- How to approximate SVERL in large and complicated domains.
- A participant-based study on using SVERL.

Thank you for listening!

References

[1] Shapley, L.S. A value for n-person games. (1953).

[2] Dietterich, G.T. The MAXQ method for hierarchical reinforcement learning. ICML 98, 118–126 (1998).

[3] Strumbelj, E., Kononenko, I. An efficient explanation of individual classifications using game theory. *The Journal of Machine Learning Research*, 11, 1-18 (2010).

[4] Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

[5] Ribeiro, M.T., Singh, S., Guestrin, C. "Why should i trust you?" Explaining the predictions of any classifier. *In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, 1135-1144 (2016).

[6] Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

[7] Wang, Z., Schaul, T., Hessel, M. et al. Dueling network architectures for deep reinforcement learning. ICML, 1995–2003 (2016).

[8] Lundberg, S.M., Lee, S.-L. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30 (2017).

[9] Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

[10] Greydanus, S., Koul, A., Dodge, J. et al. Visualizing and understanding atari agents. ICML 1792–1801 (2018).

[11] Sutton, R.S., Barto, A.G. Reinforcement learning: An introduction. MITpress, (2018).

[12] Mott, A., Zoran, D., Chrzanowski, M. et al. Towards interpretable reinforcement learning using attention augmented agents. *Advances in neural information processing systems* 32, (2019).

[13] Rizzo, S.G., Vantini, G., Chawla, S. Reinforcement learning with explainability for traffic signal control. *In 2019 IEEE intelligent transportation systems conference* 3567-3572. (2019).

[14] Vinyals, O., Babuschkin, I., Czarnecki, W.M. *et al.* Grandmaster level in StarCraft II using multi-agent reinforcement learning. *Nature* 575, 350–354 (2019).
[15] Bellemare, M.G., Candido, S., Castro, P.S. *et al.* Autonomous navigation of stratospheric balloons using reinforcement learning. *Nature* 588, 77–82 (2020).

[16] Schrittwieser, J., Antonoglou, I., Hubert, T. et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 588, 604–609 (2020).

[17] Zhang, K., Xu, P., Zhang, J. Explainable AI in deep reinforcement learning models: A shap method applied in power system emergency control. *In 2020 IEEE* 4th conference on energy internet and energy system integration (EI2), 711-716. (2020).

[18] Degrave, J., Felici, F., Buchli, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419 (2022).

[19] Fawzi, A., Balog, M., Huang, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53 (2022).

[20] Wurman, P.R., Barrett, S., Kawamoto, K. et al. Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature 602, 223–228 (2022).

[21] Seo, J., Kim, S., Jalalvand, A. et al. Avoiding fusion plasma tearing instability with deep reinforcement learning. Nature 626, 746–751 (2024).