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Learn a policy 𝝅 ∶ 𝓢 → 𝜟(𝓐) that maps each state to a probability distribution

over actions, maximising the expected return:

𝔼 𝐺𝑡 = 𝔼 σ𝑘=0 𝛾
𝑘𝑅𝑡+𝑘+1

What is Reinforcement Learning (RL)?

Reward

ActionState

Environment

Agent
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4Stratospheric Balloons [15] Nuclear Fusion Reactor Control [18][21]

Atari [4]

What Can Reinforcement Learning Do?

StarCraft II [14] Gran Turismo [20]AlphaGo [6][9][16] Matrix Multiplication 
[19]

Reinforcement learning 

agents do not explain 

their actions.



Certain features of an agent’s observations influence 

how they interact with their environment.

Contribution: A mathematical framework for 

explaining agent-environment interactions using the 

influence of features.
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Understanding Agent-Environment Interactions



2 Miles

10 Miles

● Arrow directions influence policy.

● Arrow directions influence 

performance.

● Distances do not influence policy or 

performance.

● Destination distances influence value 

prediction.
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What Needs Explaining?



Compute the influence of features by observing the 

behaviour change caused by their removal.

Features are interdependent, removing one feature 

does not properly capture its influence.
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Computing Feature Influence



8

Shapley Values

[1]



Shapley Values for Explaining 
Reinforcement Learning (SVERL)



11

Shapley Values for Explaining Reinforcement Learning
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Explaining Policy
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Explaining Policy in Taxi
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Shapley Values for Explaining Reinforcement Learning
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Explaining Performance in Taxi
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Shapley Values for Explaining Reinforcement Learning
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Explaining Value Prediction in Taxi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Feature Importance 

Methods

o Gradient [7]

o Perturbation [10]

o Attention [12]

o LIME [5]

Shapley Values in 

Supervised Learning 

o SHAP [3][8]

Shapley Values in 

Reinforcement Learning

o SHAP applied to RL [13][17]
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Related Work



Shapley Values for Explaining Reinforcement Learning (SVERL)

○ Explaining policy

○ Explaining performance 

○ Explaining value prediction

Active Research

○ How to approximate SVERL in large and complicated domains.

○ A participant-based study on using SVERL.

Thank you for listening!
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Summary + Active Research
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