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OVERVIEW SHAPLEY VALUES FOR EXPLAINING REINFORCEMENT LEARNING (SVERL)

Reinforcement learning provides a rich framework for creating intelligent Three cooperative games played by the values of features F at state s whose outcomes are different aspects of agent-environment interactions.
agents that adapt and improve through continuous interaction with the world.

However, uninterpretable agent behaviour hinders the deployment of
reinforcement learning at scale.
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a mathematical framework for explaining agent-environment interactions in
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In simple domains, SVERL produces meaningful explanations that match §'eS ’ s'€S
human intuition. In complex domains, the explanations reveal novel insight. Shapley values: The contribution of feature values to Shapley values: The contribution of feature values to Shapley values: The contribution of feature values to

the probability of selecting action a in state s. expected return from state s. predicting expected return from state s.

Certain features of an agent’s observations influence different aspects of
agent-environment interactions: policy, performance and value prediction.

Example: Autonomous vehicle using signs with directions and distances EXPLAI NlNG TAXI
(features) to navigate the shortest path to a destination.

Explaining Policy

EXPLAINING MASTERMIND

: : Episode Policy Performance Value Prediction
2 Miles 2 Miles 2 05 0.50 1
< 0.29
—_— — i 016 g1y 014 018 l0.17
(D)
| T%—‘ 0 O T T - """""" L
oxE . HEEN HEEN
.
N ( N ( Explaining Performance %
: S 5 3.74 o,
10 Miles E 2.40 2.38 i L@ =
- 0.51 .09 - ' 8.
E 0 - e - L 0 g
\ | y ;%:' El Top State Bottom State 08 "%i
K ) N —5 T T T T O A A 1 O A "\2
<
. . . . gj
Explaining Value Prediction =
‘= 0.78 0.85 =l
= (0 U - (.14
= RN e—C —_ R
E =97 4,60 0| A]A|1
o) T T T T _1
(a) Directions influence policy. 4 o P b
(b) Directions influence performance (blue arrows) but not always (orange). Features: Taxi coordinates (x, y), passenger location (P) and destination location (D). Features: 12 grid squares.

(c) Distances influence value prediction but not policy or performance.
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game theory.
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agent?
Approximate s (C) with a parametric function 7 (C; f) minimising:
Contribution assignment problem: How to assign the contribution ¢;(v) of
' ?
player i to the outcome of the game (F, v): LB =E E E ‘W(S, a) — 7%(C; 5)|2 3. How can combining explanation and behavioural models exploit shared structure
p7(s) Unif(A) p(C) to explain interactions as part of behaviour?
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